Let $R$ be a relation on $Z \times Z$ defined by$ (a, b)$$R(c, d)$ if and only if $ad - bc$ is divisible by $5$ . Then $\mathrm{R}$ is
Reflexive and symmetric but not transitive
Reflexive but neither symmetric not transitive
Reflexive, symmetric and transitive.
Reflexive and transitive but not symmetric
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{A}$ of human beings in a town at a particular time given by
$ \mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ and $ \mathrm{y}$ work at the same place $\}$
Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is
Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by
If $R \subset A \times B$ and $S \subset B \times C\,$ be two relations, then ${(SoR)^{ - 1}} = $