ધારો કે $R$ એ ' $(a, b) R(c, d)$ તો અને તો જ $a d-b c$ એ $5$ વડે વિભાજ્ય છે' દ્વારા વ્યાખ્યાયિત $Z \times Z$ પરનો એક સંબંધ છે. તો $R$ એ__________.
સ્વવાચક અને સંમિત છે પરંતુ પરંપરિત નથી.
સ્વવાચક છે પરંતુ સંમિત પણ નથી અને પરંપરિત પણ નથી.
સ્વવાચક, સંમિત અને પરંપરિત છે.
સ્વવાચક અને પરંપરિત છે પરંતુ સંમિત નથી.
જો $R = \{(1, 3), (2, 2), (3, 2)\}$ અને $S = \{(2, 1), (3, 2), (2, 3)\}$ એ ગણ $A = \{1, 2, 3\} $પરના સંબંધ હોય તો $RoS =$
જો સંબંધ $R$ એ $A$ થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ . . .
ધારો કે $S =\{1,2,3, \ldots, 10\}$. ધારો કે $S$ ના બધાજ ઉપગણોનો ગણ $M$ છે. તો સંબંધ $R =\{( A , B ): A \cap B \neq \phi$; $A , B , \in M \}$ એ . . . . . .છે.
ધારોકે $A =\{1,2,3,4, \ldots ., 10\}$ અને $B =\{0,1,2,3,4\}$. સંબંધ $R =\left\{( a , b ) \in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ માં ધટકોની સંખ્યા $..........$ છે.
ધારો કે $A =\{2,3,4,5, \ldots ., 30\}$ અને $A \times A$ પરનો સામ્ય સંબંધ $^{\prime} \simeq ^{\prime}$ એ $(a, b) \simeq (c, d),$ તો અને તો જ $ad =bc$ પ્રમાણે વ્યાખ્યાયિત છે. તો ક્રમયુક્ત જોડ $(4, 3)$ સાથે સામ્ય સંબંધનું સમાધાન કરે તેવી ક્રમયુક્ત જડની સંખ્યા .... છે.