$\mathrm{Z} \times \mathrm{Z}$ पर $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$ यदि और केवल यदि $\mathrm{ad}-\mathrm{bc}, 5$ से विभाज्य है, द्वारा परिभाषित संबंध $\mathrm{R}$
स्वतुल्य और सममित है परन्तु संक्रामक नहीं है
स्वतुल्य है परन्तु न तो सममित है न ही संक्रामक है
स्वतुल्य, सममित और संक्रामक है
स्वतुल्य और संक्रामक है परन्तु सममित नहीं है
माना $R$ तथा $S$, समुच्चय $A $ पर तुल्यता संबंध है, तब
वास्तविक संख्याओं $x $ तथा $ y $ के लिए $ x Ry$ $\Leftrightarrow $ $x - y + \sqrt 2 $ एक अपरिमेय संख्या है, तब $R $ है
मान लीजिए कि $X =\{1,2,3,4,5,6,7,8,9\}$ है। मान लीजिए कि $X$ में $R _{1}=\left\{(x, y): x-y\right.$ संख्या $3$ से भाज्य है $\}$ द्वारा प्रदत्त एक संबंध $R _{1}$ है तथा $R _{2}=\{(x, y):\{x, y\}$ $\subset\{1,4,7\}$ या $\{x, y\} \subset\{2,5,8\}$ या $\left\{(x, y\} \subset\{3,6,9\}\right.$ द्वारा प्रदत्त $X$ में एक अन्य संबंध $R _{2}$ है। सिद्ध कीजिए कि $R _{1}= R _{2}$ है।
$n \times n$ के वास्तविक आव्यूहों $A$ तथा $B$ के एक समूह पर एक संबंध $R$ निम्न प्रकार से परिभाषित है :
"$ARB$ यदि और केवल यदि एक व्युत्क्रमणीय आव्यूह $P$ का अस्तित्व है। जिसके लिए $PAP -1= B$ है'। तो निम्न में से कौन-सा सत्य है ?
समुच्चय $A = \{1, 2, 3, 4, 5\},$ पर संबंध $R, R = \{(x, y)| x, y $ $ \in $ $ A$ तथा $ x < y\} $ के द्वारा परिभाषित है, तब $R$ है