1.Relation and Function
easy

Give an example of a relation. Which is Reflexive and transitive but not symmetric.

Option A
Option B
Option C
Option D

Solution

Define a relation $R$ in $R$ as $:$

$\left.R=\{a, b): a^{3} \geq b^{3}\right\}$

Clearly $(a,a)\in R$                    as $a^{3}=a^{3}$

$\therefore R$ is reflexive.

Now, $(2,1)\in R$                $[$ as  $2^{3} \geq 1^{3}]$

But, $(1,2)\notin R$               $[$ as  $1^{3} < 2^{3}]$

$\therefore R$ is not symmetric.

Now, Let $(a, b),\,(b, c) \in R$

$\Rightarrow a^{3} \geq b^{3}$ and $b^{3} \geq c^{3}$

$\Rightarrow a^{3} \geq c^{3}$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, relation $R$ is reflexive and transitive but not symmetric.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.