Give an example of a relation. Which is Reflexive and transitive but not symmetric.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Define a relation $R$ in $R$ as $:$

$\left.R=\{a, b): a^{3} \geq b^{3}\right\}$

Clearly $(a,a)\in R$                    as $a^{3}=a^{3}$

$\therefore R$ is reflexive.

Now, $(2,1)\in R$                $[$ as  $2^{3} \geq 1^{3}]$

But, $(1,2)\notin R$               $[$ as  $1^{3} < 2^{3}]$

$\therefore R$ is not symmetric.

Now, Let $(a, b),\,(b, c) \in R$

$\Rightarrow a^{3} \geq b^{3}$ and $b^{3} \geq c^{3}$

$\Rightarrow a^{3} \geq c^{3}$

$\Rightarrow(a, c) \in R$

$\therefore R$ is transitive.

Hence, relation $R$ is reflexive and transitive but not symmetric.

Similar Questions

If $R$ be a relation $<$ from $A = \{1,2, 3, 4\}$ to $B = \{1, 3, 5\}$ i.e., $(a,\,b) \in R \Leftrightarrow a < b,$ then $Ro{R^{ - 1}}$ is

Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............

  • [JEE MAIN 2024]

Let $X$ be a family of sets and $R$ be a relation on $X$ defined by $‘A$ is disjoint from $B’$. Then $R$ is

Let $I$ be the set of positve integers. $R$ is a relation on the set $I$ given by $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ is a non-negative integer$\}$, then $R$ is 

For $\alpha \in N$, consider a relation $R$ on $N$ given by $R =\{( x , y ): 3 x +\alpha y$ is a multiple of 7$\}$.The relation $R$ is an equivalence relation if and only if.

  • [JEE MAIN 2022]