Let $A=\{1,2,3, \ldots \ldots .100\}$. Let $R$ be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $\mathrm{R} \subset \mathrm{R}_1$ and the number of elements in $\mathrm{R}_1$ is $\mathrm{n}$. Then, the minimum value of $n$ is..........................
$60$
$66$
$50$
$40$
Show that the relation $R$ defined in the set A of all triangles as $R =\left\{\left( T _{1},\, T _{2}\right):\, T _{1}\right.$ is similar to $\left. T _{2}\right\}$, is equivalence relation. Consider three right angle triangles $T _{1}$ with sides $3,\,4,\,5, \,T _{2}$ with sides $5,\,12\,,13 $ and $T _{3}$ with sides $6,\,8,\,10 .$ Which triangles among $T _{1},\, T _{2}$ and $T _{3}$ are related?
If $R$ is a relation from a set $A$ to a set $B$ and $S$ is a relation from $B$ to a set $C$, then the relation $SoR$
Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$
For real numbers $x$ and $y$, we write $ xRy \in $ $x - y + \sqrt 2 $ is an irrational number. Then the relation $R$ is