Let $A=\{1,2,3, \ldots \ldots .100\}$. Let $R$ be a relation on A defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $\mathrm{R} \subset \mathrm{R}_1$ and the number of elements in $\mathrm{R}_1$ is $\mathrm{n}$. Then, the minimum value of $n$ is..........................
$60$
$66$
$50$
$40$
Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$
The relation $R$ defined in $N$ as $aRb \Leftrightarrow b$ is divisible by $a$ is
Give an example of a relation. Which is Reflexive and symmetric but not transitive.
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{A}$ of human beings in a town at a particular time given by
$ \mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}$ and $ \mathrm{y}$ work at the same place $\}$
Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is: