Let $A =\{2,3,4\}$ and $B =\{8,9,12\}$. Then the number of elements in the relation $R=\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right) \in(A \times B, A \times B): a_1\right.$ divides $b_2$ and $a_2$ divides $\left.b_1\right\}$ is:

  • [JEE MAIN 2023]
  • A

    $36$

  • B

    $12$

  • C

    $18$

  • D

    $24$

Similar Questions

Let $\mathrm{A}$ be the set of all students of a boys school. Show that the relation $\mathrm{R}$ in A given by $\mathrm{R} =\{(a, b): \mathrm{a} $ is sister of $\mathrm{b}\}$ is the empty relation and $\mathrm{R} ^{\prime}=\{(a, b)$ $:$ the difference between heights of $\mathrm{a}$ and $\mathrm{b}$ is less than $3\,\mathrm{meters}$ $\}$ is the universal relation. 

Show that the relation $R$ defined in the set $A$ of all polygons as $R=\left\{\left(P_{1}, P_{2}\right):\right.$ $P _{1}$ and $P _{2}$ have same number of sides $\}$, is an equivalence relation. What is the set of all elements in $A$ related to the right angle triangle $T$ with sides $3,\,4$ and $5 ?$

Let $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, where $N$ is the set of all natural numbers. Then the relation $R$ is

  • [JEE MAIN 2013]

Let L be the set of all lines in a plane and $\mathrm{R}$ be the relation in $\mathrm{L}$ defined as $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{L}_{2}\right): \mathrm{L}_{1}\right.$ is perpendicular to $\left. \mathrm{L} _{2}\right\}$. Show that $\mathrm{R}$ is symmetric but neither reflexive nor transitive.

Which one of the following relations on $R$ is an equivalence relation