If $R_{1}$ and $R_{2}$ are equivalence relations in a set $A$, show that $R_{1} \cap R_{2}$ is also an equivalence relation.
since $R _{1}$ and $R _{2}$ are equivalence relations, $(a, a) \in R _{1},$ and $(a, a) \in R _{2}$ $ \forall a \in A$ This implies that $(a, a) \in R _{1} \cap R _{2}, \forall a,$ showing $R _{1} \cap R _{2}$ is reflexive. Further, $(a, b) \in R _{1} \cap R _{2} \Rightarrow(a, b) \in R _{1}$ and $(a, b) \in R _{2} \Rightarrow(b, a) \in R _{1}$ and $(b, a) \in R _{2} \Rightarrow$ $(b, a) \in R_1 \cap R_2$ hence, $R _{1} \cap R _{2}$ is symmetric. Similarly, $(a, b) \in R _{1} \cap R _{2}$ and $(b, c) \in R _{1} \cap R _{2} \Rightarrow(a, c) \in R _{1}$ and $(a, c) \in R _{2} \Rightarrow(a, c) \in R _{1} \cap $ $R _{2} .$ This shows that $R _{1} \cap $ $ R _{2}$ is transitive. Thus, $R _{1} \cap $ $R _{2}$ is an equivalence relation.
Let $P = \{ (x,\,y)|{x^2} + {y^2} = 1,\,x,\,y \in R\} $. Then $P$ is
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then
Let $A = \{ 2,\,4,\,6,\,8\} $. $A$ relation $R$ on $A$ is defined by $R = \{ (2,\,4),\,(4,\,2),\,(4,\,6),\,(6,\,4)\} $. Then $R$ is
Let $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, where $N$ is the set of all natural numbers. Then the relation $R$ is
Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R =\{(x, y): x $ and $y$ have same number of pages $\}$ is an equivalence relation.