माना $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ के प्रसार में सातवें तथा तेरहवें पदों के गुणांक क्रमशः $m$ तथा $n$ है। तो $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ बराबर है :

  • [JEE MAIN 2024]
  • A

     $\frac{4}{9}$

  • B

     $\frac{1}{9}$

  • C

    $\frac{1}{4}$

  • D

     $\frac{9}{4}$

Similar Questions

माना $\left(2 x^{\frac{1}{5}}-\frac{1}{x^{\frac{1}{5}}}\right)^{15}, x > 0$ के प्रसार में $x ^{-1}$ तथा $x ^{-3}$ के गुणांक क्रमश: $m$ तथा $n$ है। यदि धनात्मक पूर्णांक $r$ इस प्रकार है कि $m n^2={ }^{15} C _{ r } .2^{ r }$ है, तो $r$ का मान है।

  • [JEE MAIN 2022]

${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ के प्रसार में $6$ वां पद होगा   

यदि $(1+x)^n$ के प्रकार में तीन क्रमागत पदों के गुणांकों का अनुपात $1: 5: 20$ है, तो चौथे पद का गुणांक है

  • [JEE MAIN 2023]

यदि ${(a + b)^n}$ के प्रसार में $\frac{{{T_2}}}{{{T_3}}}$ व ${(a + b)^{n + 3}}$ के प्रसार में $\frac{{{T_3}}}{{{T_4}}}$ समान हैं, तब $n=$

यदि $(1+a)^{n}$ के प्रसार में $a^{r-1}, a^{r}$ तथा $a^{r+1}$ के गुणांक समांतर श्रेणी में हों तो सिद्ध कीजिए कि $n^{2}-n(4 r+1)+4 r^{2}-2=0$