$\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ ના વિસ્તરણમાં સાતમા અને તેરમા પદ્દોના સહગુણકો અનુક્રમે $\mathrm{m}$ અને $\mathrm{n}$ છે. તો $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}=$.....................
$\frac{4}{9}$
$\frac{1}{9}$
$\frac{1}{4}$
$\frac{9}{4}$
જો $\left(\frac{x^{5 / 2}}{2}-\frac{4}{x^i}\right)^9$ ના દ્રીપદી વિસ્તરણમાં અચળ પદ $- 84$ હોય અને $x^{-3 l}$ નો સહગગુુાક $2^\alpha \cdot \beta$ હોય, જ્યાં $\beta < 0$ એક અયુગ્મ સંખ્યા છે,તો $|\alpha l-\beta|=.............$.
$(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.
સમીકરણ $(1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+\ldots+x^{10}$ માં $x^{7}$ નો સહગુણક મેળવો.
${\left( {{x^2} - \frac{1}{x}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.
$\left( {{2^{1/3}} + \frac{1}{{2{{\left( 3 \right)}^{1/3}}}}} \right)^{10}$ ના વિસ્તરણમાં પહેલેથી $5^{th}$ માં પદ અને છેલ્લેથી $5^{th}$ માં પદનો ગુણોત્તર મેળવો.