यदि $(1+x)^{34}$ के प्रसार में $(r-5)^{th}$ और$(2 r-1)^{th}$ पदों के गुणांक समान हों $r$ ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The coefficients of $(r-5)^{ th }$ and $(2 r-1)^{th }$ terms of the expansion $(1+x)^{34}$ are $^{34}{C_{r - 6}}$ and $^{34}{C_{2r - 2}},$ respectively. Since they are equal so ${\,^{34}}{C_{r - 6}} = {\,^{34}}{C_{2r - 2}}$

Therefore, either $r-6=2 r-2$ or $r-6=34-(2 r-2)$

[Using the fact that if ${\,^n}{C_r} = {\,^m}{C_p},$ then either $r = p$ or $r = n - p$ ]

So, we get $r=-4$ or $r=14 . r$ being a natural number, $r=-4$ is not possible. So, $r=14$

 

Similar Questions

$\lambda$ का धनात्मक मान, जिसके लिये व्यंजक $x ^{2}\left(\sqrt{ x }+\frac{\lambda}{ x ^{2}}\right)^{10}$ में $x ^{2}$ का गुणांक $720$ है, होगा

  • [JEE MAIN 2019]

${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में  $x$ से स्वतंत्र पद है   

${(1 + x)^n}$ के विस्तार में  $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश:  $p $ व  $q$ हों, तो $p + q = $

यदि ${(1 + x)^m}{(1 - x)^n}$ के प्रसार $(expansion)$ में $x$ और ${x^2}$ के गुणांक $(coefficient)$ क्रमश: $3$ और  $-6$ हैं, तो $m =$

  • [IIT 1999]

$x$ के उन वास्तविक मानों जिनके लिये $\left(\frac{x^{3}}{3}+\frac{3}{x}\right)^{8}$ के द्विपद प्रसार का मध्य पद $5670$ है, का योग है 

  • [JEE MAIN 2019]