${(1 + x)^{18}}$ के प्रसार में यदि $(2r + 4)$ वें तथा $(r - 2)$ वें पदों के गुणांक बराबर हैं, तब $r =$
$12$
$10$
$8$
$6$
${(x + a)^n}$ के द्विपद विस्तार में पदों ${x^{n - r}}{a^r}$ तथा ${x^r}{a^{n - r}}$ के गुणांको का अनुपात होगा
यदि $\left(a x-\frac{1}{b x^2}\right)^{13}$ में $x^7$ का गुणांक तथा $\left(a x+\frac{1}{b x^2}\right)^{13}$ में $x^{-5}$ का गुणांक बराबर हैं, तो $a^4 b^4$ बराबर है :
${\left( {{x^2} + \frac{a}{x}} \right)^5}$ के प्रसार में $x$ का गुणांक है
${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ के प्रसार में ${x^7}$ का गुणांक होगा
यदि ${(1 + ax)^n}$, $(n \ne 0)$ के विस्तार में प्रथम तीन पद क्रमश: $1, 6x$ व $16x^2$ हैं, तो $a$ व $n$ के मान क्रमश: होंगे