Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0, z \in C$. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :

  • [JEE MAIN 2024]
  • A

    $6$

  • B

    $4$

  • C

    $8$

  • D

    $2$

Similar Questions

If ${z_1}$ and ${z_2}$ are two complex numbers satisfying the equation $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$, then $\frac{{{z_1}}}{{{z_2}}}$ is a number which is

Let $z_1 = 6 + i$ and $z_2 = 4 -3i$. Let $z$ be a complex number such that $arg\ \left( {\frac{{z - {z_1}}}{{{z_2} - z}}} \right) = \frac{\pi }{2}$, then $z$ satisfies -

If $\sqrt 3 + i = (a + ib)(c + id)$, then ${\tan ^{ - 1}}\left( {\frac{b}{a}} \right) + $ ${\tan ^{ - 1}}\left( {\frac{d}{c}} \right)$ has the value

If $\bar z$ be the conjugate of the complex number $z$, then which of the following relations is false

If $|z_1|=1, \, |z_2| =2, \,|z_3|=3$ and $|9z_1z_2 + 4z_1z_3+z_2z_3| =12$ then the value of $|z_1+z_2+z_3|$ is equal to :-