Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^2+|z|=0, z \in C$. Then $4\left(\alpha^2+\beta^2\right)$ is equal to :
$6$
$4$
$8$
$2$
Let $z$ be a complex number such that $\left| z \right| + z = 3 + i$ (where $i = \sqrt { - 1} $). Then $\left| z \right|$ is equal to
If $z_1 = 1+2i$ and $z_2 = 3+5i$ , then ${\mathop{\rm Re}\nolimits} \,\left( {\frac{{{{\overline Z }_2}{Z_1}}}{{{Z_2}}}} \right) = $
If complex numbers $z_1$ and $z_2$ both satisfy $z + \overline z = 2 | z -1 |$ and $arg(z_1 -z_2) = \frac{\pi}{3} ,$ then value of $Im (z_1 + z_2)$ is, where $Im (z)$ denotes imaginary part of $z$ -
If ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ and $z$ is a complex number such that $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4},$ then the value of $|z - 7 - 9i|$ is equal to
If $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$ then