$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ is equal to
$\frac{\pi }{2}$
$ - \frac{\pi }{2}$
$0$
$\frac{\pi }{4}$
If ${z_1},{z_2}$ are two complex numbers such that $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ and $i{z_1} = k{z_2}$, where $k \in R$, then the angle between ${z_1} - {z_2}$ and ${z_1} + {z_2}$ is
For any complex number $z,\bar z = \left( {\frac{1}{z}} \right)$if and only if
$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =
If ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ and $z$ is a complex number such that $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4},$ then the value of $|z - 7 - 9i|$ is equal to
If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to