$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$ is equal to

  • A

    $\frac{\pi }{2}$

  • B

    $ - \frac{\pi }{2}$

  • C

    $0$

  • D

    $\frac{\pi }{4}$

Similar Questions

If $|{z_1}| = |{z_2}| = .......... = |{z_n}| = 1,$ then the value of $|{z_1} + {z_2} + {z_3} + ............. + {z_n}|$=

If ${Z_1} \ne 0$ and $Z_2$ be two complex numbers such that $\frac{{{Z_2}}}{{{Z_1}}}$ is a purely imaginary number, then $\left| {\frac{{2{Z_1} + 3{Z_2}}}{{2{Z_1} - 3{Z_2}}}} \right|$ is equal to 

  • [JEE MAIN 2013]

The minimum value of $|2z - 1| + |3z - 2|$is

If $z$ and $w$ are two complex numbers such that $|zw| = 1$ and $arg(z) -arg(w) =\frac {\pi }{2},$ then

  • [JEE MAIN 2019]

If $arg\,(z) = \theta $, then $arg\,(\overline z ) = $