ધારો કે $\alpha$ અને $\beta$ એ અનુક્રમે સમીકરણ $(\bar{z})^2+|z|=0, z \in \mathrm{C}$ ના તમામ શૂન્યેતર ઉકેલોના સરવાળા તથા ગુણાકાર દર્શાંવે છે. તો $4\left(\alpha^2+\beta^2\right)=$ ..........
$6$
$4$
$8$
$2$
જો $z = 3 + 5i,\,\,$ તો $\,{z^3} + \bar z + 198 = $
$arg\,(5 - \sqrt 3 i) = $
$z=\alpha+i \beta$ માટે જો $|z+2|=z+4(1+i)$ હોય, તો $\alpha+\beta$ અને $\alpha \beta$ એ $.........$ સમીકરણ ના બીજ છે.
$\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 - i}}$ નો કોણાંક મેળવો.
જો $z = x + iy$ એ $|z|-2=0$ અને $|z-i|-|z+5 i|=0$ નું સમાધાન કરે છે તો . . . .