- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$ are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then $(a + b + c)$ is equal to-
A
$0$
B
$-1$
C
$1$
D
$2$
Solution
Condition for non-trivial solution is
$\left|\begin{array}{ccc}{a-1} & {a} & {a} \\ {b} & {b-1} & {b} \\ {c} & {c} & {c-1}\end{array}\right|=0$
$\Rightarrow(a+b+c-1)\left|\begin{array}{ccc}{1} & {1} & {1} \\ {b} & {b-1} & {b} \\ {c} & {c} & {c-1}\end{array}\right|=0$
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$
$\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\Rightarrow a+b+c=1$
Standard 12
Mathematics