- Home
- Standard 11
- Mathematics
1.Set Theory
hard
ધારો કે $S = \{ x \in R:x \ge 0$ અને $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ તો $S:$ . . .
A
ફકત એક જ ઘટક ધરાવે છે.
B
ફકત બે જ ઘટક ધરાવે છે.
C
ફકત ચાર જ ઘટક ધરાવે છે.
D
ખાલી ગણ છે.
(JEE MAIN-2018)
Solution
Case – $I$ : $x\,\in \,[0,\,9]$
$2(3 – \sqrt x )\, + \,x\, – \,6\sqrt x \, + \,6\, = \,0$
$ \Rightarrow \,x\, – \,8\sqrt x \, + \,12\, = \,0\, \Rightarrow \,\sqrt x \, = \,4,2\, \Rightarrow \,x\, = \,16,4$
Since $x\, \in \,[0,\,9]$
$\therefore \,\,x\,=\,4$
Case – $II$ : $x\, \in \,[9,\,\infty ]$
$2(\sqrt x – 3)\, + \,x\, – \,6\sqrt x \, + \,6\, = \,0$
$ \Rightarrow \,x\, – \,4\sqrt x \,\, = \,0\, \Rightarrow \,x\, = \,16,0$
Since $x\, \in \,[9,\,\infty ]$
$\therefore \,\,x\,=\,16$
Hence , $x\,=\,4$ and $16$
Standard 11
Mathematics