1.Relation and Function
hard

Let $\mathrm{A}=\{1,2,3,4,5\}$. Let $\mathrm{R}$ be a relation on $\mathrm{A}$ defined by $x R y$ if and only if $4 x \leq 5 y$. Let $m$ be the number of elements in $\mathrm{R}$ and $\mathrm{n}$ be the minimum number of elements from $\mathrm{A} \times \mathrm{A}$ that are required to be added to $\mathrm{R}$ to make it a symmetric relation. Then $m+n$ is equal to:

A

$24$

B

$23$

C

$25$

D

$26$

(JEE MAIN-2024)

Solution

Given : $4 x \leq 5 y$

then

$\mathrm{R}=\{ $$ (1,1),(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4) $

$ (2,5),(3,3),(3,4),(3,5),(4,4),(4,5),(5,4),(5,5)\}$

i.e. $16$ elements.

i.e. $\mathrm{m}=16$

Now to make $\mathrm{R}$ a symmetric relation add

$\{(2,1)(3,2)(4,3)(3,1)(4,2)(5,3)(4,1)(5,2)(5,1)\}$

i.e. $\mathrm{n}=9$

So $\mathrm{m}+\mathrm{n}=25$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.