An integer $m$ is said to be related to another integer $n$ if $m$ is a multiple of $n$. Then the relation is

  • A

    Reflexive and symmetric

  • B

    Reflexive and transitive

  • C

    Symmetric and transitive

  • D

    Equivalence relation

Similar Questions

Let $R= \{(3, 3) (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)\}$ be a relation on the set $A= \{3, 5, 9, 12\}.$ Then, $R$ is

  • [JEE MAIN 2013]

Let $A=\{1,3,4,6,9\}$ and $B=\{2,4,5,8,10\}$. Let $R$ be a relation defined on $A \times B$ such that $R =$ $\left\{\left(\left(a_1, b_1\right),\left(a_2, b_2\right)\right): a_1 \leq b_2\right.$ and $\left.b_1 \leq a_2\right\}$. Then the number of elements in the set $R$ is

  • [JEE MAIN 2023]

Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is

Let $R$ be a relation defined on $N \times N$ by $(a, b) R(c, d) \Leftrightarrow  a(b + c) = c(a + d).$ Then $R$ is

Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then

  • [JEE MAIN 2024]