1.Relation and Function
hard

Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :

A

$20$

B

$120$

C

$25$

D

$24$

(JEE MAIN-2024)

Solution

$\mathrm{N}=2310 $$ =231 \times 10 $

$= 3 \times 11 \times 7 \times 2 \times 5$

$ A=\{2,3,5,7,11\} $

$ f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$

$ f(2)=\left[\log _2(5)\right]=2 $

$ f(3)=\left[\log _2(14)\right]=3 $

$ f(5)=\left[\log _2(25+25)\right]=5 $

$ f(7)=\left[\log _2(117)\right]=6 $

$ f(11)=\left[\log _2 387\right]=8$

Range of $f: B=\{2,3,5,6,8\}$

No. of one-one functions $=5 !=120$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.