1.Relation and Function
normal

If $f(x)$ satisfies $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ such that $f(x)$ has exactly $5$ real roots which are all distinct such that sum of the real roots is $S$ then $S/7$ is equal to

A

$1$

B

$3$

C

$5$

D

$7$

Solution

$f(x)$ is symmetrical about the line $x=7.$

Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ and $\mathrm{x}_{5}$ are the real and distinct

roots of $f(x)=0 .$ Then $x_{3}=7, \frac{x_{1}+x_{5}}{2}=7,$

$\frac{\mathrm{x}_{2}+\mathrm{x}_{4}}{2}=7.$

$\mathrm{S}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}=35$

$\mathrm{S} / 7=5$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.