If $f(x)$ satisfies $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ such that $f(x)$ has exactly $5$ real roots which are all distinct such that sum of the real roots is $S$ then $S/7$ is equal to
$1$
$3$
$5$
$7$
Range of the function
$f(x) = \sqrt {\left| {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right| - {{\cos }^{ - 1}}\left| {\cos x} \right|} $ is
Let $A= \{1, 2, 3, 4\}$ and $R : A \to A$ be the relation defined by $R = \{ (1, 1), (2, 3), (3, 4), ( 4, 2) \}$. The correct statement is
If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x = \ -1$ is
If the function $f\,:\,R - \,\{ 1, - 1\} \to A$ defined by $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}},$ is surjective, then $A$ is equal to
Let $f : R \rightarrow R$ be a function defined by $f ( x )=$ $\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$, for some $m$, such that the range of $f$ is $[0,2]$. Then the value of $m$ is $............$