The range of function $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is

  • A

    [$0 , \infty$] 

  • B

    [$0 , 16$]

  • C

    [$0 , 8$]

  • D

    [$0 , 32$]

Similar Questions

Let $f(x) = {(x + 1)^2} - 1,\;\;(x \ge - 1)$. Then the set $S = \{ x:f(x) = {f^{ - 1}}(x)\} $ is

  • [IIT 1995]

The domain of ${\sin ^{ - 1}}({\log _3}x)$ is

The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to

  • [JEE MAIN 2023]

Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is 

Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$  $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.