- Home
- Standard 11
- Mathematics
13.Statistics
normal
જો $x_1,x_2,.........,x_{100}$ એ $100$ અવલોકનો એવા છે કે જેથી $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} } = 80000\,\& $ મધ્યકથી સરેરાશ વિચલન $5$ હોય તો પ્રમાણિત વિચલન મેળવો.
A
$10$
B
$30$
C
$40$
D
$50$
Solution
$\bar{x}=\frac{\sum x_{i}}{100}=0$ and
$\frac{\sum\left|x_{i}-\bar{x}\right|}{100}=5 \Rightarrow \sum\left|x_{i}\right|=500$
$ \Rightarrow \sum {x_i^2} + 2\sum\limits_{1 \le i < j \le 100} {\left| {{x_i}{x_j}} \right|} = {(500)^2}$
$\Rightarrow \frac{\sum x_{i}^{2}}{100}=\frac{(500)^{2}-2 \sum\left|x_{i} x_{j}\right|}{100}=2500-1600$
$S. D.=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{100}}=\sqrt{900}=30$
Standard 11
Mathematics