Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=x^{2}-1$ for $x \in[1,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=x^{2}-1$ for $x \in[1,2]$
It is evident that $f$, being a polynomial function, is continuous in $[1,2]$ and is differentiable in $(1,2).$
$f(1)=(1)^{2}-1=0$
$f(2)=(2)^{2}-1=3$
$\therefore f(1) \neq f(2)$
It is observed that $f$ does not satisfy a condition of the hypothesis of Roller's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2].$
For every pair of continuous functions $f, g:[0,1] \rightarrow R$ such that $\max \{f(x): x \in[0,1]\}=\max \{g(x): x \in[0,1]\}$, the correct statement$(s)$ is (are) :
$(A)$ $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(B)$ $(f(c))^2+f(c)=(g(c))^2+3 g(c)$ for some $c \in[0,1]$
$(C)$ $(f(c))^2+3 f(c)=(g(c))^2+g(c)$ for some $c \in[0,1]$
$(D)$ $(f(c))^2=(g(c))^2$ for some $c \in[0,1]$
Rolle's theorem is not applicable to the function $f(x) = |x|$ defined on $ [-1, 1] $ because
Verify Mean Value Theorem, if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[a, b],$ where $a=1$ and $b=3 .$ Find all $c \in(1,3)$ for which $f^{\prime}(c)=0$
If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to
In the mean value theorem, $f(b) - f(a) = (b - a)f'(c) $ if $a = 4$, $b = 9$ and $f(x) = \sqrt x $ then the value of $c$ is