Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=x^{2}-1$ for $x \in[1,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=x^{2}-1$ for $x \in[1,2]$
It is evident that $f$, being a polynomial function, is continuous in $[1,2]$ and is differentiable in $(1,2).$
$f(1)=(1)^{2}-1=0$
$f(2)=(2)^{2}-1=3$
$\therefore f(1) \neq f(2)$
It is observed that $f$ does not satisfy a condition of the hypothesis of Roller's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2].$
If the function $f(x) = {x^3} - 6a{x^2} + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval $[1, 2] $ and the tangent to the curve $y = f(x) $ at $x = {7 \over 4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates $x = 1$ and $x = 2$. Then the value of $a$ is
For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$ for the mean value theorem is
Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-
The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is
Number of solution of the equation $ 3tanx + x^3 = 2 $ in $ \left( {0,\frac{\pi }{4}} \right)$ is