Functions $f(x)$ and $g(x)$ are such that $f(x) + \int\limits_0^x {g(t)dt = 2\,\sin \,x\, - \,\frac{\pi }{2}} $ and $f'(x).g (x) = cos^2\,x$ , then number of solution $(s)$ of equation $f(x) + g(x) = 0$ in $(0,3 \pi$) is-
$0$
$1$
$2$
$3$
In $[0, 1]$ Lagrange's mean value theorem is $ NOT$ applicable to
Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval
Let $f(x)=2+\cos x$ for all real $x$.
$STATEMENT -1$ : For each real $\mathrm{t}$, there exists a point $\mathrm{c}$ in $[\mathrm{t}, \mathrm{t}+\pi]$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$. because
$STATEMENT -2$: $f(t)=f(t+2 \pi)$ for each real $t$.
If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to
Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is