3 and 4 .Determinants and Matrices
hard

$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $

A

$0$

B

$1$

C

$2$

D

$3abc$

Solution

(a) We have $2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} – bc}&{{b^2} – ac}&{{c^2} – ab}\end{array}\,} \right|$

= $2\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\end{array}\,} \right| – 2\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{bc}&{ac}&{ab}\end{array}\,} \right|$

= $2\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\end{array}\,} \right| – \frac{2}{{abc}}\left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{abc}&{abc}&{abc}\end{array}\,} \right|$

                                                                     { Applying ${C_1}(a),{C_2}(b),{C_3}(c)$}

$ = 2\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\end{array}\,} \right| – \frac{2}{{abc}}(abc)\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\1&1&1\end{array}\,} \right| = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.