Gujarati
3 and 4 .Determinants and Matrices
hard

माना कि $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$ है। तब $R$ में व्युत्क्रमणीय (invertible) आव्यूहों की संख्या है

A

$500$

B

$3780$

C

$515$

D

$520$

(IIT-2023)

Solution

Let us calculate when $|R|=0$

Case-I $a d=b c=0$

Now $\mathrm{ad}=0$

$\Rightarrow$ Total – (When none of a & $d$ is 0 )

$=8^2-1=15$ ways

Similarly bc $=0 \Rightarrow 15$ ways

$\therefore 15 \times 15=225$ ways of $a d=b c=0$

Case-II $a d=b c \neq 0$

either $a=d=b=c \quad$ OR $\quad a \neq d, b \neq d$ but $a d=b c$

${ }^7 \mathrm{C}_1=7$ ways

${ }^7 \mathrm{C}_2 \times 2 \times 2=84$ ways

Total 91 ways

$\therefore|\mathbb{R}|=0 \text { in } 225+91=316 \text { ways }$

$|\mathbb{R}| \neq 0 \text { in } 8^4-316=3780$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.