- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
माना कि $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$ है। तब $R$ में व्युत्क्रमणीय (invertible) आव्यूहों की संख्या है
A
$500$
B
$3780$
C
$515$
D
$520$
(IIT-2023)
Solution
Let us calculate when $|R|=0$
Case-I $a d=b c=0$
Now $\mathrm{ad}=0$
$\Rightarrow$ Total – (When none of a & $d$ is 0 )
$=8^2-1=15$ ways
Similarly bc $=0 \Rightarrow 15$ ways
$\therefore 15 \times 15=225$ ways of $a d=b c=0$
Case-II $a d=b c \neq 0$
either $a=d=b=c \quad$ OR $\quad a \neq d, b \neq d$ but $a d=b c$
${ }^7 \mathrm{C}_1=7$ ways
${ }^7 \mathrm{C}_2 \times 2 \times 2=84$ ways
Total 91 ways
$\therefore|\mathbb{R}|=0 \text { in } 225+91=316 \text { ways }$
$|\mathbb{R}| \neq 0 \text { in } 8^4-316=3780$
Standard 12
Mathematics