Gujarati
3 and 4 .Determinants and Matrices
easy

यदि किसी आव्यूह तथा उसके परिवर्त आव्यूह का गुणनफल इकाई आव्यूह हो, तो आव्यूह के सारणिक का मान होगा

A

$-1$

B

$0$

C

$ \pm {\rm{ }}1$

D

$1$

Solution

(c) माना $A = \left[ {\begin{array}{*{20}{c}}{ \pm 1}&0&0\\0&{ \pm 1}&0\\0&0&{ \pm 1}\end{array}} \right]$

और ${A^T} = \left[ {\begin{array}{*{20}{c}}{ \pm 1}&0&0\\0&{ \pm 1}&0\\0&0&{ \pm 1}\end{array}} \right]$

और $A{A^T} = \left[ {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right]$,

$\therefore \,\,|A|\,\, = \pm 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.