Let $\left(x_0, y_0\right)$ be the solution of the following equations $(2 x)^{\ln 2} =(3 y)^{\ln 3}$ $3^{\ln x} =2^{\ln y}$ . Then $x_0$ is
$\frac{1}{6}$
$\frac{1}{3}$
$\frac{1}{2}$
$6$
If ${\log _{12}}27 = a,$ then ${\log _6}16 = $
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to
If $3^x=4^{x-1}$, then $x=$
$(A)$ $\frac{2 \log _3 2}{2 \log _3 2-1}$ $(B)$ $\frac{2}{2-\log _2 3}$ $(C)$ $\frac{1}{1-\log _4 3}$ $(D)$ $\frac{2 \log _2 3}{2 \log _2 3-1}$
If ${\log _{10}}x + {\log _{10}}\,y = 2$ then the smallest possible value of $(x + y)$ is
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval