Let $S$ be the sum of the digits of the number $15^2 \times 5^{18}$ in base $10$. Then,
$S < 6$
$6 \leq S < 140$
$140 \leq S < 148$
$S \geq 148$
If $log_ab + log_bc + log_ca$ vanishes where $a, b$ and $c$ are positive reals different than unity then the value of $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ is
If ${1 \over {{{\log }_3}\pi }} + {1 \over {{{\log }_4}\pi }} > x,$ then $x$ be
If $n = 1983!$, then the value of expression $\frac{1}{{{{\log }_2}n}} + \frac{1}{{{{\log }_3}n}} + \frac{1}{{{{\log }_4}n}} + ....... + \frac{1}{{{{\log }_{1983}}n}}$ is equal to
If ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ then $x$ belongs to the interval
Let $a , b , c$ be three distinct positive real numbers such that $(2 a)^{\log _{\varepsilon} a}=(b c)^{\log _e b}$ and $b^{\log _e 2}=a^{\log _e c}$. Then $6 a+5 b c$ is equal to $........$.