Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]
  • A

    $3,9,3 $ and $ 9$

  • B

    $3,4,5 $ and $ 6$

  • C

    $3,6,4 $ and $ 8$

  • D

    $7,8,4 $ and $ 5$

Similar Questions

The sum of the first four terms of an $A.P.$ is $56 .$ The sum of the last four terms is $112.$ If its first term is $11,$ then find the number of terms.

Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$  If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals

  • [AIEEE 2006]

If $n$ arithmetic means are inserted between a and $100$ such that the ratio of the first mean to the last mean is $1: 7$ and $a+n=33$, then the value of $n$ is

  • [JEE MAIN 2022]

Let $S_n$ denote the sum of the first $n$ terms of an $A.P$.. If $S_4 = 16$ and $S_6 = -48$, then $S_{10}$ is equal to

  • [JEE MAIN 2019]

The arithmetic mean of first $n$ natural number