Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]
  • A

    $3,9,3 $ and $ 9$

  • B

    $3,4,5 $ and $ 6$

  • C

    $3,6,4 $ and $ 8$

  • D

    $7,8,4 $ and $ 5$

Similar Questions

If $f(x + y,x - y) = xy\,,$ then the arithmetic mean of $f(x,y)$ and $f(y,x)$ is

If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.

The value of $\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ is

If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is

If the sum of first $n$ terms of an $A.P.$ is $c n^2$, then the sum of squares of these $n$ terms is

  • [IIT 2009]