Let $a_1, a_2, a_3, \ldots, a_{100}$ be an arithmetic progression with $a_1=3$ and $S_p=\sum_{i=1}^p a_i, 1 \leq p \leq 100$. For any integer $n$ with $1 \leq n \leq 20$, let $m=5 n$. If $\frac{S_{m m}}{S_n}$ does not depend on $n$, then $a_2$ is

  • [IIT 2011]
  • A

    $3,9,3 $ and $ 9$

  • B

    $3,4,5 $ and $ 6$

  • C

    $3,6,4 $ and $ 8$

  • D

    $7,8,4 $ and $ 5$

Similar Questions

Find the $20^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=\frac{n(n-2)}{n+3}$ 

If ${a_1},\;{a_2},............,{a_n}$ are in $A.P.$ with common difference , $d$, then the sum of the following series is $\sin d(\cos {\rm{ec}}\,{a_1}.co{\rm{sec}}\,{a_2} + {\rm{cosec}}\,{a_2}.{\rm{cosec}}\,{a_3} + ...........$$ + {\rm{cosec}}\;{a_{n - 1}}{\rm{cosec}}\;{a_n})$

If the angles of a quadrilateral are in $A.P.$ whose common difference is ${10^o}$, then the angles of the quadrilateral are

If $^n{C_4},{\,^n}{C_5},$ and ${\,^n}{C_6},$ are in $A.P.,$ then $n$ can be 

  • [JEE MAIN 2019]

If the sum of the first $n$ terms of the series $\sqrt 3  + \sqrt {75}  + \sqrt {243}  + \sqrt {507}  + ......$ is $435\sqrt 3 $ , then $n$ equals

  • [JEE MAIN 2017]