Gujarati
8. Sequences and Series
medium

If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then

A

$p,\;,q,\;r$ are in $A.P.$

B

${p^2},\;{q^2},\;{r^2}$ are in $A.P.$

C

$\frac{1}{p},\;\frac{1}{q},\;\frac{1}{r}$ are in $A.P.$

D

None of these

Solution

(b) Since $\frac{1}{{p + q}},\;\frac{1}{{r + q}}$ and $\frac{1}{{q + r}}$ are in $A.P.$

$\therefore $ $\frac{1}{{r + q}} – \frac{1}{{p + q}} = \frac{1}{{q + r}} – \frac{1}{{r + p}}$

$ \Rightarrow $ $\frac{{p + q – r – p}}{{(r + p)(p + q)}} = \frac{{r + p – q – r}}{{(q + r)(r + p)}}$

$ \Rightarrow $ $\frac{{q – r}}{{p + q}} = \frac{{p – q}}{{q + r}}$ or ${q^2} – {r^2} = {p^2} – {q^2}$

$\therefore $ $2{q^2} = {r^2} + {p^2}$

Therefore ${p^2},\;{q^2},\;{r^2}$ are in $A.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.