If $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ are in $A.P.$, then

  • A

    $p,\;,q,\;r$ are in $A.P.$

  • B

    ${p^2},\;{q^2},\;{r^2}$ are in $A.P.$

  • C

    $\frac{1}{p},\;\frac{1}{q},\;\frac{1}{r}$ are in $A.P.$

  • D

    None of these

Similar Questions

If $1, \log _{10}\left(4^{x}-2\right)$ and $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ are in
arithmetic progression for a real number $x$ then the value of the determinant $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ is equal to ...... .

  • [JEE MAIN 2021]

The roots of the quadratic equation $3 x ^2- px + q =0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first $11$ terms of this arithmetic progression is $88$ , then $q-2 p$ is equal to_______

  • [JEE MAIN 2025]

Let the sum of $n, 2 n, 3 n$ terms of an $A.P.$ be $S_{1}, S_{2}$ and $S_{3},$ respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

A series whose $n^{th}$ term is $\left( {\frac{n}{x}} \right) + y,$ the sum of $r$ terms will be

If $\left\{a_{i}\right\}_{i=1}^{n}$ where $n$ is an even integer, is an arithmetic progression with common difference $1$ , and $\sum \limits_{ i =1}^{ n } a _{ i }=192, \sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$, then $n$ is equal to

  • [JEE MAIN 2022]