If the sum of the first $2n$ terms of $2,\,5,\,8...$ is equal to the sum of the first $n$ terms of $57,\,59,\,61...$, then $n$ is equal to
$10$
$12$
$11$
$13$
The sum of $1 + 3 + 5 + 7 + .........$ upto $n$ terms is
If twice the $11^{th}$ term of an $A.P.$ is equal to $7$ times of its $21^{st}$ term, then its $25^{th}$ term is equal to
The number of terms in the series $101 + 99 + 97 + ..... + 47$ is
The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-
Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.