Gujarati
Hindi
8. Sequences and Series
hard

Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?

$(A)$ $T_{20}=1604$

$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$

$(C)$ $T_{30}=3454$

$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$

A

$A,B$

B

$B,C$

C

$A,C$

D

$A,D$

(IIT-2022)

Solution

$a _1=7, d =8$

$T _{ n +1}- T _{ n }= a _{ n } \forall n \geq 1$

$S _{ n }= T _1+ T _2+ T _3+\ldots+ T _{ n -1}+ T _{ n }$

$S _{ n }=\quad T _1+ T _2+ T _3+\ldots .+ T _{ n -1}+ T _{ n }$

on subtraction

$T_n=T_1+a_1+a_2+\ldots .+a_{n-1}$

$T_n=3+(n-1)(4 n-1)$

$T_n=4 n^2-5 n+4$

$\sum_{k=1}^n T_k=4 \sum n^2-5 \sum n+4 n$

$T_{20}=1504$

$T_{30}=3454$

$\sum_{k=1}^{30} T_k=35615 $

$\sum_{k=1}^{20} T_k=10510$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.