A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .

  • [JEE MAIN 2021]
  • A

    $\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$

  • B

    $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

  • C

    $x^{2}-y^{2}=9$

  • D

    $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

Similar Questions

The equation of the normal to the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ at the point $(8,\;3\sqrt 3 )$ is

If the vertices of a hyperbola be at $(-2, 0)$ and $(2, 0)$ and one of its foci be at $(-3, 0)$, then which one of the following points does not lie on this hyperbola?

  • [JEE MAIN 2019]

The locus of the point of intersection of the lines $bxt - ayt = ab$ and $bx + ay = abt$ is

A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3 x^2+4 y^2=12$. Then its equation is

  • [IIT 2007]

The foci of a hyperbola are $( \pm 2,0)$ and its eccentricity is $\frac{3}{2}$. A tangent, perpendicular to the line $2 x+3 y=6$, is drawn at a point in the first quadrant on the hyperbola. If the intercepts made by the tangent on the $x$ - and $y$-axes are $a$ and $b$ respectively, then $|6 a|+|5 b|$ is equal to $..........$.

  • [JEE MAIN 2023]