10-2. Parabola, Ellipse, Hyperbola
medium

A hyperbola passes through the foci of the ellipse $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ and its transverse and conjugate axes coincide with major and minor axes of the ellipse, respectively. If the product of their eccentricities in one, then the equation of the hyperbola is ...... .

A

$\frac{x^{2}}{9}-\frac{y^{2}}{25}=1$

B

$\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

C

$x^{2}-y^{2}=9$

D

$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

(JEE MAIN-2021)

Solution

For ellipse $e_{1}=\sqrt{1-\frac{b^{2}}{a^{2}}}=\frac{3}{5}$

for hyperbola $e _{2}=\frac{5}{3}$

Let hyperbola be

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$\because$ it passes through $(3,0) \Rightarrow \frac{9}{a_{2}}=1$

$\Rightarrow a ^{2}=9$

$\Rightarrow b ^{2}= a ^{2}\left( e ^{2}-1\right)$

$=9\left(\frac{25}{9}-1\right)=16$

$\therefore$ Hyperbola is $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.