Gujarati
3 and 4 .Determinants and Matrices
medium

Let $M$ be a $3 \times 3$ invertible matrix with real entries and let $I$ denote the $3 \times 3$ identity matrix. If $M ^{-1}=\operatorname{adj}(\operatorname{adj} M )$, then which of the following statement is/are $ALWAYS TRUE$ ?

$(A)$ $M=I$   $(B)$ $\operatorname{det} M =1$   $(C)$ $M ^2= I$  $(D)$ $(\operatorname{adj} M)^2=I$

A

$B,C,D$

B

$A,B,D$

C

$A,B$

D

$A,C$

(IIT-2020)

Solution

$\operatorname{det}( M ) \neq 0$

$M ^{-1}=\operatorname{adj}(\operatorname{adj} M )$

$M ^{-1}=\operatorname{det}( M ) \cdot M$   $. . . . . . .(I)$

$M ^{-1} M =\operatorname{det}( M ) \cdot M ^2$

$I =\operatorname{det}( M ) \cdot M ^2$      $. . . . . . .(II)$

$\operatorname{det}( I )=(\operatorname{det}( M ))^5$

$1=\operatorname{det}( M )$

From (i) $I = M ^2$

$(\operatorname{adj} M )^2=\operatorname{adj}\left( M ^2\right)=\operatorname{adj} I = I$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.