Suppose $a_1, a_2, .......$ real numbers, with $a_1 \ne 0$. If $a_1, a_2, a_3, ..........$ are in $A.P$. then

  • A
    $A =$ $\left[ {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}\\{{a_4}}&{{a_5}}&{{a_6}}\\{{a_5}}&{{a_6}}&{{a_7}}\end{array}} \right]$  is singular
  • B
    the system of equations $a_1x + a_2y + a_3z = 0, a_4x + a_5y + a_6z = 0, a_7x + a_8y + a_9z = 0$ has infinite number of solutions
  • C
    $B =$$\left[ {\begin{array}{*{20}{c}}{{a_1}}&{i{a_2}}\\{i{a_2}}&{{a_1}} \end{array}} \right]$ is non singular ; where $i =$$\,\sqrt { - 1} \,$
  • D
    All of the above

Similar Questions

Evaluate $\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$

If the minimum and the maximum values of the function $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R ,$ defined by : 

$f (\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ are $m$ and $M$ respectively, then the ordered pair $( m , M )$ is equal to

  • [JEE MAIN 2020]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Let $P$ be a matrix of order $3 \times 3$ such that all the entries in $P$ are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of $P$ is. . . . . . .

  • [IIT 2018]

$\left| {\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\sin }^2}\theta }&{{{\sin }^2}\theta }\\{{{\cos }^2}\theta }&{1 + {{\cos }^2}\theta }&{{{\cos }^2}\theta }\\{4\sin 4\theta }&{4\sin 4\theta }&{1 + 4\sin 4\theta }\end{array}} \right| = 0$ then $\sin \,4\theta $ equal to