माना $f:[0,2] \rightarrow R$ एक फलन है जो
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा
$0$
$1$
$5$
$6$
समीकरण ${\tan ^2}\theta + \sec 2\theta - = 1$ को सन्तुष्ट करने वाला $\theta $ का व्यापक हल है
यदि $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, तब $x = $ (जहाँ $k \in Z$)
यदि समीकरण निकाय $2 \sin ^2 \theta-\cos 2 \theta=0$ तथा $2 \cos ^2 \theta+3 \sin \theta=0$ के अंतराल $[0,2 \pi]$ में हलों का योगफल $k \pi$ है, तो $k$ बराबर है $......$
समीकरण $3{\sin ^2}x + 10\cos x - 6 = 0$ का व्यापक हल होगा
समीकरणों $2{\sin ^2}x + {\sin ^2}2x = 2$ व $\sin 2x + \cos 2x = \tan x,$ के उभयनिष्ठ मूल हैं