- Home
- Standard 12
- Mathematics
Let $M$ be a $2 \times 2$ symmetric matrix with integer entries. Then $M$ is invertible if
$(A)$ the first column of $M$ is the transpose of the second row of $M$
$(B)$ the second row of $M$ is the transpose of first column of $M$
$(C)$ $M$ is a diagonal matrix with nonzero entries in the main diagonal
$(D)$ the product of entries in the main diagonal of $M$ is not the square of an integer
$(A,D)$
$(C,D)$
$(B,D)$
$(B,C)$
Solution
$M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$
$(A)$ $\left[\begin{array}{l} a \\ b \end{array}\right] \&[ b c]$ are transpose.
So $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}b \\ c\end{array}\right]$ is given $\Rightarrow a=b=c$
$M=\left[\begin{array}{ll}a & a \\ a & a\end{array}\right] \quad \Rightarrow \quad|M|=0 \quad$ A is wrong.
$(B)$ $[ b c] \&\left[\begin{array}{l} a \\ b \end{array}\right]$ are transpose.
So $a = b = c$ $B$ is wrong
$(C)$ $M =\left[\begin{array}{ll} a & 0 \\ 0 & c \end{array}\right] \quad \Rightarrow \quad| M |= ac \neq 0 \quad C$ is correct
$(D)$ $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ given $a c \neq \lambda^2$.
$D$ is correct
$(C, D)$ are correct.