3 and 4 .Determinants and Matrices
hard

Let $A$ and $B$ be any two $3\times3$ matrices. If $A$ is symmetric and $B$ is skewsymmetric, then the matrix $AB - BA$ is

A

skewsymmetric

B

symmetric

C

neither symmetric nor skewsymmetric

D

$I$ or $-I$, where $I$ is an identity matrix

(JEE MAIN-2014)

Solution

Let $A$ be symmetric matrix and $B$ be skew symmetric matrix.

$\therefore {A^T} = A$ and ${B^T} =  – B$

Consider 

${\left( {AB – BA} \right)^T} = \left( {A{B^T}} \right) – {\left( {BA} \right)^T}$

$ = {B^T}{A^T} – {A^T}{B^T}$

$ = \left( { – B} \right)\left( A \right) – \left( A \right)\left( { – B} \right)$

$ =  – BA + AB = AB – BA$

This shows $AB-BA$ is symmetric matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.