माना कि $E_1$ और $E_2$ दो दीर्घवृत हैं जिनके केन्द्र मूलबीन्दु हैं। $E_1$ और $E_2$ की दीर्घ अक्षायें क्रमशः $x$-अक्ष और $y$-अक्ष पर स्थित हैं। माना कि $S: x^2+(y-1)^2=2$ एक वृत्त है। सरल रेखा $x+y=3$, वक्रों $S, E_1$ और $E_2$ को क्रमशः $P, Q$ और $R$ पर स्पर्श करती है। माना कि $P Q=P R=\frac{2 \sqrt{2}}{3}$ है। यदि $e_1$ और $e_2$ क्रमशः $E_1$ और $E_2$ की उत्केन्द्रता (eccentricities) हैं, तब सही कथन है

$(A)$ $e_1^2+e_2^2=\frac{43}{40}$

$(B)$ $e_1 e_2=\frac{\sqrt{7}}{2 \sqrt{10}}$

$(C)$ $\left|e_1^2-e_2^2\right|=\frac{5}{8}$

$(D)$ $e_1 e_2=\frac{\sqrt{3}}{4}$

  • [IIT 2015]
  • A

    $(A,B)$

  • B

    $(B,D)$

  • C

    $(B,C)$

  • D

    $(A,C)$

Similar Questions

दीर्घवृत्त  $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है

यदि सरल रेखा $y = mx + c$, दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की स्पर्श रेखा हो, तो $c$ का मान होगा

सरल रेखा $x + 4y = 4$ का दीर्घवृत्त ${x^2} + 4{y^2} = 4$ के सापेक्ष ध्रुव है

उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा   

उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ  $( \pm 5,\;0)$ तथा एक नियता $5x = 36$ है, होगा