माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________. 

  • [JEE MAIN 2023]
  • A

    $117$

  • B

    $116$

  • C

    $118$

  • D

    $125$

Similar Questions

यदि दो बिन्दुओं $A$ तथा $B$ के निर्देशांक क्रमशः $(\sqrt{7}, 0)$ तथा $(-\sqrt{7}, 0)$ हैं और शांकव (conic) $9 x ^{2}+16 y ^{2}$ $=144$ पर कोई बिन्दु $P$ है, तो $PA + PB$ बराबर है

  • [JEE MAIN 2020]

यदि नियताओं के बीच की दूरी नाभियों के बीच की दूरी की तीन गुनी हो तो दीर्घवृत्त की उत्केन्द्रता होगी

दीर्वृघत $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ को नाभियो से होकर जाने वाले उस वृत, जिसका केन्द्र $(0,3)$ है, का समीकरण है,

  • [JEE MAIN 2013]

माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :

  • [JEE MAIN 2022]

उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:

  • [AIEEE 2011]