माना कि $f, g:[-1,2] \rightarrow R$ संतत फलन है जो की अंतराल $(-1,2)$ में दो बार अवकलनीय (twice differentiable) है। माना कि $f$ और $g$ के मान, बिन्दुओं $-1,0$ और $2$ पर निम्न सारणी में दर्शाए गए है -

  $x=-1$ $x=0$ $x=2$
$f(x)$ $3$ $6$ $0$
$g(x)$ $0$ $1$ $-1$

यदि प्रत्येक अंतराल $(-1,0)$ और $(0,2)$ में फलन $( f -3 g )$ " कभी भी शून्य का मान नही लेता है, तव सही कथन है (हैं)

$(A)$ $(-1,0) \cup(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के तीन ही हल (exactly three solutions) हैं

$(B)$ $(-1,0)$ में, $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ के एक ही हल (exactly one solutions) है

$(C)$ $(0,2)$ में, $f^{\prime}(x)-3 g^{\prime}(x)=0$ के एक ही हल (exactly one solution ) है

$(D)$ $f ^{\prime}( x )-3 g ^{\prime}( x )=0$ को $(-1,0)$ में दो ही हल (exactly two solutions) है और $(0,2)$ में दो ही हल है

  • [IIT 2015]
  • A

    $(A,B)$

  • B

    $(B,D)$

  • C

    $(A,D)$

  • D

    $(B,C)$

Similar Questions

बहुपदों $p: R \rightarrow R$, जिसके लिए $p(0)=0$, सभी $x \neq 0$ के लिए $p(x)>x^2$ तथा $p^{\prime \prime}(0)=$ $\frac{1}{2}$ है, की संख्या होगी :

  • [KVPY 2018]

यदि फलन $f(x) = {x^3} - 6{x^2} + ax + b$ रौले प्रमेय को अंतराल $[1,\,3]$ में संतुष्ट करता है और $f'\left( {\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}} \right) = 0$, तब $a =$ ..............

माना $\mathrm{f}:[2,4] \rightarrow \mathbb{R}$ एक अवकलनीय फलन है, जिसके लिए $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4], f(2)=\frac{1}{2}$ तथा $f(4)=\frac{1}{4}$ हैं।

निम्न दो कथनों का विचार कीजिए :

($A$) सभी $\mathrm{x} \in[2,4]$ के लिए $\mathrm{f}(\mathrm{x}) \leq 1$, है।

($B$) सभी $x \in[2,4]$ के लिए $f(x) \geq \frac{1}{8}$ है। तो

  • [JEE MAIN 2023]

$[-1, 1]$  पर परिभाषित फलन $f(x) = |x|$ के लिए रोले का प्रमेय लागू नहीं है, क्योंकि

यदि $f ^{\prime} G \left(\frac{4}{3}\right)=0$, के साथ फलन $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ के लिए रोले का प्रमेय लागू होता है, तो क्रमित युग्म $( a , b )$ बराबर है

  • [JEE MAIN 2021]