फलन $y=x^{2}+2$ के लिए रोले के प्रमेय को सत्यापित कीजिए, जब $a=-2$ तथा $b=2$ है।
The function $y=x^{2}+2$ is continuous in $[-2,2]$ and differentiable in $(-2,2).$
Also $f(-2)=f(2)=6$ and hence the value of $f(x)$ at $-2$ and $2$ coincide. Rolle's theorem states that there is a point $c \in(-2,2),$ where $f^{\prime}(c)=0 .$ Since $f^{\prime}(x)=2 x,$ we get $c=0 .$ Thus at $c=0,$ we have $f^{\prime}(c)=0$ and $c=0 \in(-2,2)$
संतत फलनों (Continuous functions) के प्रत्येक युग्म (pair) $f , g :[0,1] \rightarrow R$ जिनके लिये अधिकतम $\{ f ( x ): x \in[0,1]\}$ = अधिकतम $\{ g ( x ): x \in[0,1]\}$ है, के लिये सत्य कथन है(हैं)
$(A)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+3 g(c)$
$(B)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+f(c)=(g(c))^2+3 g(c)$
$(C)$ किसी $c \in[0,1]$ के लिये $(f(c))^2+3 f(c)=(g(c))^2+g(c)$
$(D)$ किसी $c \in[0,1]$ के लिये $(f(c))^2=(g(c))^2$
फलनों के लिए माध्यमान प्रमेय की अनुपयोगिता की जाँच कीजिए।:
$(i)$ $f(x)=[x]$ के लिए $x \in[5,9]$
$(ii)$ $f(x)=[x]$ के लिए $x \in[-2,2]$
$(iii)$ $f(x)=x^{2}-1$ के लिए $x \in[1,2]$
यदि $f ^{\prime} G \left(\frac{4}{3}\right)=0$, के साथ फलन $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ के लिए रोले का प्रमेय लागू होता है, तो क्रमित युग्म $( a , b )$ बराबर है
अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है
माना $R$ पर परिभाषित कोई फलन $f$ है तथा माना यह $|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ को संतुष्ट करता है। यदि $f(0)=1$ है, तो