इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है:
प्रत्येक वास्तविक संख्या $x$ पर $f$ अवकलनीय है
फलन $f$ के लेखाचित्र की एक सममित रेखा $x=0$ है
$\int_{-3}^3 f(x) d x=0$
प्रत्येक वास्तविक संख्या $\alpha$ के लिए, दिये गए समीकरण $f(x)-\alpha=0$ के अपरिमित शून्यक है
जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?
$f(x)=[x]$ के लिए $x \in[5,9]$
फलन $f(x) = {(x - 3)^2}$ मध्यमान प्रमेय की सभी शर्तो को $ [3, 4] $ में सन्तुष्ट करता है। यदि $y = {(x - 3)^2}$ पर एक बिन्दु से खींची गई स्पर्श रेखा $ (3, 0) $ और $(4, 1)$ को मिलाने वाली जीवा के समान्तर हो, तो वह बिन्दु है
मान लीजिए कि $f: R \rightarrow R$ अभिकलनीय फलन $(differentiable\,functon)$ इस प्रकार है कि किन्हीं $a < b$ के लिए $f(a)=0=f(b)$ और $f^{\prime}(a) f^{\prime}(b) > 0$ है। अंतराल $(interval$;' $( a , b )$ में $f( x )$ के मूलों $(roots)$ की न्यूनतम संख्या क्या है ?
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
फलन $f(x)=x^{2}+2 x-8, x \in[-4,2]$ के लिए रोले के प्रमेय को सत्यापित कीजिए।