Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . .
$0.20$
$0.50$
$0.55$
$0.60$
If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
If $\alpha $ and $\beta $ are different complex numbers with $|\beta | = 1$, then $\left| {\frac{{\beta - \alpha }}{{1 - \overline \alpha \beta }}} \right|$ is equal to
For any complex number $w = c + id$, let $\arg ( w ) \in(-\pi, \pi]$, where $i =\sqrt{-1}$. Let $\alpha$ and $\beta$ be real numbers such that for all complex numbers $z=x+$ iy satisfying arg $\left(\frac{z+\alpha}{z+\beta}\right)=\frac{\pi}{4}$, the ordered pair $( x , y )$ lies on the circle
$x^2+y^2+5 x-3 y+4=0 .$
Then which of the following statements is (are) TRUE?
$(A)$ $\alpha=-1$ $(B)$ $\alpha \beta=4$ $(C)$ $\alpha \beta=-4$ $(D)$ $\beta=4$
If complex number $z = x + iy$ is taken such that the amplitude of fraction $\frac{{z - 1}}{{z + 1}}$ is always $\frac{\pi }{4}$, then
A real value of $x$ will satisfy the equation $\left( {\frac{{3 - 4ix}}{{3 + 4ix}}} \right) = $ $\alpha - i\beta \,(\alpha ,\beta \,{\rm{real),}}$ if