If complex numbers $z_1$, $z_2$ are such that $\left| {{z_1}} \right| = \sqrt 2 ,\left| {{z_2}} \right| = \sqrt 3$ and $\left| {{z_1} + {z_2}} \right| = \sqrt {5 - 2\sqrt 3 }$, then the value of $|Arg z_1 -Arg z_2|$ is

  • A

    $\frac{{2\pi }}{3}$

  • B

    $\frac{\pi }{3}$

  • C

    $\frac{\pi }{4}$

  • D

    $\frac{{3\pi }}{4}$

Similar Questions

$\left| {\frac{1}{2}({z_1} + {z_2}) + \sqrt {{z_1}{z_2}} } \right| + \left| {\frac{1}{2}({z_1} + {z_2}) - \sqrt {{z_1}{z_2}} } \right|$ =

The amplitude of $\sin \frac{\pi }{5} + i\,\left( {1 - \cos \frac{\pi }{5}} \right)$

If $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$ then the value of $arg\,(z)$ is

Let $z$, $w \in C$ satisfy ${z^2} + \bar w = z$ and ${w^2} + \bar z = w$ then number of ordered pairs of  complex numbers $(z, w)$ is equal to

The inequality $|z - 4|\, < \,|\,z - 2|$represents the region given by

  • [IIT 1982]