The sum of all two digit numbers which, when divided by $4$, yield unity as a remainder is
$1190$
$1197$
$1210$
None of these
If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
After inserting $n$, $A.M.'s$ between $2$ and $38$, the sum of the resulting progression is $200$. The value of $n$ is
If $a,\,b,\,c$ are in $A.P.$, then $(a + 2b - c)$ $(2b + c - a)$ $(c + a - b)$ equals
If $a,b,c,d,e$ are in $A.P.$ then the value of $a + b + 4c$ $ - 4d + e$ in terms of $a$, if possible is