The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
$4000$
$4020$
$4200$
$4220$
Let $a_n$ be a sequence such that $a_1 = 5$ and $a_{n+1} = a_n + (n -2)$ for all $n \in N$, then $a_{51}$ is
Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be
If $x_1 , x_2 , ..... , x_n$ and $\frac{1}{{{h_1}}},\frac{1}{{{h^2}}},......\frac{1}{{{h_n}}}$ are two $A.P' s$ such that $x_3 = h_2 = 8$ and $x_8 = h_7 = 20$, then $x_5. h_{10}$ equals
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to