Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of
$(\bar{z})^2+\frac{1}{z^2}$
are integers, then which of the following is/are possible value($s$) of $|z|$ ?
$\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$
If $|z|\, = 1,(z \ne - 1)$and $z = x + iy,$then $\left( {\frac{{z - 1}}{{z + 1}}} \right)$ is
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is
Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Let $A =\left\{\theta \in(0,2 \pi): \frac{1+2 i \sin \theta}{1- i \sin \theta}\right.$ is purely imaginary $\}$. Then the sum of the elements in $A$ is