Let $\bar{z}$ denote the complex conjugate of a complex number $z$. If $z$ is a non-zero complex number for which both real and imaginary parts of

$(\bar{z})^2+\frac{1}{z^2}$

are integers, then which of the following is/are possible value($s$) of $|z|$ ?

  • [IIT 2022]
  • A

    $\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$

  • B

    $\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$

  • C

    $\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$

  • D

    $\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$

Similar Questions

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

Let $z$ and $w$ be two complex numbers such that $w=z \bar{z}-2 z+2,\left|\frac{z+i}{z-3 i}\right|=1$ and $\operatorname{Re}(w)$ has minimum value. Then, the minimum value of $n \in N$ for which $w ^{ n }$ is real, is equal to..........

  • [JEE MAIN 2021]

If $z_1, z_2  $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to

Find the modulus and the argument of the complex number $z=-\sqrt{3}+i$

If $|{z_1}|\, = \,|{z_2}|$ and $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, then ${z_1} + {z_2}$ is equal to