माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है। यदि $z$ एक ऐसी शून्येतर ($non-zero$) सम्मिश्र संख्या है जिसके लिए
$(\bar{z})^2+\frac{1}{z^2}$ के वास्तविक एवं काल्पनिक दोनों भाग (both real and imaginary parts) पूर्णांक (integers) हैं, तब निम्न में से कौन सा (से) $|z|$ के संभावित मान है (हैं) ?
$\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$
$\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$
माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है
यदि $z$ तथा $\omega$ दो सम्मिश्र संख्याएँ हैं, जिनके लिए $|z \omega|=1$ तथा $\arg ( z )-\arg (\omega)=\frac{3 \pi}{2}$ है, तो $\arg$ $\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ बराबर है : (जहाँ $\arg ( z )$ सम्मिश्र संख्या $z$ के मुख्य कोणांक को दर्शाता है)
यदि $|z - 25i| \le 15$, तब $|\max .amp(z) - \min .amp(z)| = $
यदि $|z|\, = 1,(z \ne - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=
माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है