माना कि $\bar{z}$ एक सम्मिश्र संख्या (complex number) $z$ के सम्मिश्र संयुग्मी (complex conjugate) को निरूपित करता है। यदि $z$ एक ऐसी शून्येतर ($non-zero$) सम्मिश्र संख्या है जिसके लिए

$(\bar{z})^2+\frac{1}{z^2}$  के वास्तविक एवं काल्पनिक दोनों भाग (both real and imaginary parts) पूर्णांक (integers) हैं, तब निम्न में से कौन सा (से) $|z|$ के संभावित मान है (हैं) ?

  • [IIT 2022]
  • A

    $\left(\frac{43+3 \sqrt{205}}{2}\right)^{\frac{1}{4}}$

  • B

    $\left(\frac{7+\sqrt{33}}{4}\right)^{\frac{1}{4}}$

  • C

    $\left(\frac{9+\sqrt{65}}{4}\right)^{\frac{1}{4}}$

  • D

    $\left(\frac{7+\sqrt{13}}{6}\right)^{\frac{1}{4}}$

Similar Questions

माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है

  • [AIEEE 2002]

यदि $z$ तथा $\omega$ दो सम्मिश्र संख्याएँ हैं, जिनके लिए $|z \omega|=1$ तथा $\arg ( z )-\arg (\omega)=\frac{3 \pi}{2}$ है, तो $\arg$ $\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ बराबर है : (जहाँ $\arg ( z )$ सम्मिश्र संख्या $z$ के मुख्य कोणांक को दर्शाता है)

  • [JEE MAIN 2021]

यदि $|z - 25i| \le 15$, तब $|\max .amp(z) - \min .amp(z)| = $

यदि  $|z|\, = 1,(z \ne  - 1)$तथा $z = x + iy,$तब $\left( {\frac{{z - 1}}{{z + 1}}} \right)$=

माना $w(\operatorname{Im} w \neq 0)$ एक सम्मिश्र संख्या है, तो सभी सम्मिश्र संख्याओं $z$ का समुच्चय, जो किसी वास्तविक संख्या $k$ के लिए, समीकरण $w -\overline{ w } z = k (1-z)$ को संतुष्ट करता है

  • [JEE MAIN 2014]